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Abstract—A system to monitor the concentrations of trace 
chemicals in cabin atmosphere is one of the most critical 
components in long-duration human flight missions. 12The 
Vehicle Cabin Atmosphere Monitor (VCAM) is a miniature 
gas chromatograph mass spectrometer system to be used to 
detect and quantify trace chemicals in the International 
Space Station.  We developed an autonomous 
computational process to quantify trace chemicals for use in 
VCAM. The process involves the design of a measured 
signal quantification scheme, the construction of 
concentration curves (i.e. the relationship between 
concentration and ion count measured by VCAM), the 
decision rule of applying high- or low-gain concentration 
curves, and the detection of saturation, low-signals, and 
outliers. When the developed quantification process is 
applied, the average errors of concentration for most of 
trace chemicals are found to be between 14% and 66%. � �  
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1. INTRODUCTION 
The Vehicle Cabin Atmosphere Monitor (VCAM) is a gas 
chromatograph mass spectrometer instrument and is 
designed to autonomously identify trace organic species in 
the International Space Station (ISS) internal air and to 
quantify their concentration [1,2]. VCAM uses a gas 
chromatograph to separate chemicals in terms of time of 
arrival to the mass spectrometer. The chemicals travel 
through a specially prepared glass tube (column) in the gas 
state. The interactions of these gaseous analytes with the 
walls of the column causes different compounds to emerge 
at different times which are called retention times. After the 
chemicals are time separated, VCAM uses a quadrupole ion 
trap mass spectrometer to make unique mass fractionation 
patterns of each chemical analyte by applying a quadrupole 
RF electric field to hyperbolic electrodes and ramping the 
amplitude of the electric field at a constant rate [3].   
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Using the two instruments together, VCAM is designed to 
identify and quantify trace organic species. One of the 
operation requirements for VCAM is the autonomous 
quantification of the concentrations for approximately forty 
trace species within 40% error for a range of concentrations 
guided by the Spacecraft Maximum Allowable 
Concentrations (SMACs). In this paper, we present the 
autonomous process that we developed to quantify the 
concentrations of the trace chemicals. 

2. APPROACH  
VCAM divides the trace gas species to be identified and 
quantified into three priorities: Priority 1, Priority 2, and 
Priority 3. Tables 1, 2, and 3 list these groups and their 
desired detection concentration ranges. Priority 1 has the 
requirement of one hundred percent successful detection 
and identification. Priority 2 and Priority 3 require 80% and 
70% detection and identification, respectively. For all three 
priorities, the error budget for quantification is 40%.  

Designing Signal Quantification Scheme 

In order to quantify the concentrations of the trace species, 
we first must design a scheme to quantify the measured 
signal of an elution peak. We examined three different ways 
to quantify the signal and selected the best performing 
scheme.  

The first approach is to use the total ion count (TIC) under 
an elution peak subtracting an estimated background signal 
as shown in Figure 1. The total ion count is the sum of all 
the ion counts that are measured during the elution peak 
regardless of the mass channel numbers of the mass 
spectrometer. As a result, the total ion count will necessarily 
include contributions from noise or other nearby events.  

The second approach is to use the sum of the ion counts of 
the mass channels only from perceived “data” mass peaks 
based on which mass peaks contributed most greatly to the 
elution peak’s total height.  We call this quantity data ion 
count (DIC). This approach directly couples the peak 
detection performed by the NIST Automated Mass Spectral 
Deconvolution and Identification System (AMDIS) 
algorithm [4,5].  

Figure 2 shows a typical mass spectrum of an elution peak. 
The total ion count under an elution peak is distributed 
among different mass values depending on the ionized 
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fragmentation of a given chemical. DIC is the sum of some 
of the red bars that AMDIS classifies as a major 
contributing mass peak for the given elution peak. There are 
several mass peaks that are persistent across elution and 
background frames for an entire run. These peaks appear 
due to the imperfect vacuum of the system. AMDIS scheme 
can distinguish the persistent mass peaks from signal mass 
peaks that truly belong to an elution peak. This method also 
attempts to distinguish between nearby elution events than 
may be partially merged (coeluted) in time.   

The third approach is to use the sum of the ion counts of the 
mass channels specified by the library record identified as 
most likely by AMDIS. We call this quantity library ion 
count (LIC). The library mass peaks are the mass peaks that 
should appear for a given compound due to its ionized 
fragmentation pattern while it undergoes an ionization 
process. In principle, data mass peaks should be identical to 
library mass peaks for a given successfully identified event. 
But in practice data mass peaks often contain certain extra 
peaks due to system contamination, signal saturation, noise, 
or coelutions, while some expected library peaks may be 
missing due to sensitivity issues. Further, the NIST spectral 
library was defined relative to specific hardware which will 
never precisely match any other given configuration for all 
compound fragmentation patterns.  

Figure 2 shows a comparison between the measured 
spectrum and the library spectrum for several chemicals. 
The fluorobenzene mass spectrum shows the typical 

saturation distortion pattern resulting from high chemical 
concentration measured with high-gain mode. The broader 
peaks in the measured spectrum will lead to the LIC being 
much smaller than the DIC due to the detected mass peaks 
far exceeding the library mass peaks in number. In contrast, 
the perfluoropropane mass spectrum shows a typical weak 
signal distortion pattern when low chemical concentration is 
measured with low-gain mode. Several mass peaks at high 
masses are missing or very weak compared to the expected 
library spectrum. The m-xylene spectrum shows an ideal 
situation where the measured spectrum looks very similar to 
the library spectrum across all mass peaks. The extra peaks 
around mass 30 are persistent mass peaks; the AMDIS-
based mass peak finding algorithm (DIC) will ignore such 
contributions. For this ideal case, DIC is very similar to 
LIC.  

The three different ways of defining a signal will give 
similar results, when the system is clean, the signal is 
neither saturated nor weak. However for a special case 
where we have coelution peaks that have large overlaps of 
the ion counts of multiple compounds, we should 
decompose the ion counts into several groups of ion counts 
for each different compound. LIC provide a means to 
decompose the ion counts for the coelution peaks if the 
library mass spectrum of the coeluting chemicals are largely 
orthogonal. Unfortunately, this is not the case for the 
majority of chemicals within our library which have similar 
retention times.   

 
Figure 1 – Total Ion Chromatogram measured by VCAM Test-Bed (TB) Unit.  
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Constructing Concentration Curves 

After the measured signal intensity is quantified in terms of 
integrated number of ion counted, we construct 
concentration curves. These curves capture the relationship 
between quantified signal counts and the physical 
concentration of the eluting chemical. After trying several 
different functional forms, the concentration curves are 
empirically defined as the log-log linear equation:  

log10(concentration) = alog10(signal) + b      (1) 

We obtain the optimal value for the slope a and the 
intercept b using a chi-square fitting for each chemical 
separately. Training data were weighted according to 
measurement errors and intrinsic measurement fluctuations. 
Since we have duplicate measurements for the same 
concentration, we can define the measurement fluctuation 
with the standard deviation of the quantified signal. We 
initially tried a non-weighted least square fitting method but 
found that the method failed when data contain many 
outliers and fluctuations. Chi-square fitting was found to be 
less subject to such anomalies and noise than a non-
weighted least square fitting because the chi-square fitting 
take into account the measurement fluctuation and give a 

lower weight on the measurements with higher fluctuations. 
When the outliers and inhomogeneous fluctuations are 
manually removed, both the chi-square fitting and non-
weighted least square fitting led to a similar concentration 
curve.  

Gain Switch Decision Rule 

VCAM performs in a dual-gain mode (high and low) in 
order to increase its dynamic range of concentration 
sensitivity. The gain determines the signal strength by 
varying the pulse duration of the ionization process. A 
higher gain means a longer pulse-duration, more ionization, 
and a higher counts for a given concentration. The reason 
that we use the dual-gain mode is that VCAM has the wide 
desired detection concentration range of the compounds so 
that one fixed gain cannot satisfy the concentration range. 
For example, if the gain is too low, we cannot detect a low 
concentration chemical. Conversely, if the gain is too high, 
we will have a saturated signal for a high concentration 
chemical so that the signal does not grow any further even 
though the concentration increases. As a result, we cannot 
estimate the concentration correctly. Having the dual-gain 
model addresses the shortcoming of the one-gain problems. 
The high-gain mode provides a sufficient signal for a low 

 

 
Figure 2 - Mass spectra of several chemical species. Each compound has a different mass spectrum with different 

mass peaks and different relative intensities of the peaks. DIC is calculated by adding the ion counts of mass peaks 
shown in the measured spectrum while LIC is calculated by adding the ion counts of mass peaks that coincide 

with library mass peaks in the library spectrum. 
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concentration chemical, while the low-gain mode provides 
an unsaturated signal for a high concentration. Both high 
and low gain data are simultaneously taken for every run by 
alternating a long and a short pulse duration. 

Although the dual gain does permit unsaturated detection of 
all specified ranges, we must decide when to use the high or 
low gain data without prior knowledge of sample 
concentration. Since both gain modes have different signal 
levels, we first must construct a concentration curve for 
each mode separately. After the concentration curves for 
both high and low gains are established, we have a choice 
of which gain-mode concentration curves to use for a 
detected signal. Since we have the dual-gain mode, we can 
select one mode that is more reliable than the other and use 
the mode to estimate the concentration. When a saturated 
signal is detected, this means that the high-gain signal is 
saturated so we will use a low-gain mode signal, apply the 
low-gain concentration curve, and report the concentration. 
Conversely, when a low signal is detected, this means that 
the low-gain signal is too weak to use so we will use a high-
gain signal to determine the concentration.  

This gain switch decision rule relies on the algorithm to 
determine whether the signal is saturated or weak. We 
developed a simple empirical algorithm for the 
determination of the saturated or weak signal. We take the 
maximum number of ion counts for the highest peak line 
above mass 33 in order to avoid the persistent N2 and O2 
peaks at 28 and 32, respectively. If the maximum ion count 
is more than 8000, it is considered saturated. If the 
maximum ion count is less than 300, it is considered weak. 
Applying this rule leads to the choice of a more reliable 
gain in case of the existence of a saturated signal or a weak 
signal.  

3. RESULTS  
Selecting Best Signal Quantification Scheme 

In order to establish concentration curves, we measured 
over 1100 elution events including over 30 chemicals, 5 
different concentration values per chemical, and about 3 
duplicates for each chemical and concentration. Figure 3 
shows the concentration curves of the chemical species that 
we tested on the VCAM lab standard unit using three 
different ways to quantify a signal (TIC, DIC, and LIC). 
The symbols represent the quantified values of the 
measured signal and the lines represent the fitted 
concentration curves using the measurements.  

As shown in Figure 3, we observed that DIC generates 
many more outliers that the other two ion-count methods 
(TIC and LIC). The large fluctuation of DIC for the same 
concentration is due to the sensitivity of our mass-peak 
finding algorithm to the signal fluctuation. The peak finding 
algorithm determines whether some signal is a contributor 
to a particular elution peak based on the signal sharpness 

relative to the noise/background level. This can vary run to 
run resulting in differing number of mass peaks considered 
contributing. Although this fluctuation is relatively harmless 
to identification, the DIC concentration scheme relies on 
these peaks for its count integration and is distored by such 
run-to-run noise. For this reason, we decided to not use DIC 
as the ion-count determining method for concentration 
curves. 

Between TIC and LIC, the fitting error of the concentration 
curve is usually smaller with TIC for most of chemicals. 
One disadvantage of using LIC is its sensitivity to mass 
calibration errors and the dissimilarity of the library 
spectrum to the real spectrum. Our system experienced mass 
calibration errors of up to 1 AMU in certain spectral ranges, 
resulting the misalignment of entire significant peaks. 
Similarity of the library spectrum to the observed spectrum 
is also required for LIC to make sense, a requirement which 
held true approximately 75% of the time in our data. On the 
other hand, LIC has a strong advantage over TIC in terms of 
its ability to decompose the ion count from multiple 
chemicals in the case of coelution. However, the 
decomposition is not perfect unless the chemicals in the 
coelution peak have distinguishable library spectra. Most of 
our coeluting chemicals have similar library spectra, which 
complicate the ion count decomposition of the involved 
chemicals. Therefore, we selected TIC as the signal 
quantification method for our concentration curves although 
we are aware of its inability of decomposing the ion count 
under a coelution peak. With more accurate mass 
calibration and the use of the customized spectral library in 
future systems, LIC is predicted to be the most reliable 
method.     

Obtaining Concentration Curves 

Figure 3 shows that the weighted chi-square fitting is more 
reliable in extracting the overall trend without being 
obscured by outliers. When there are strong outliers (mostly 
in DIC case), the nonweighted least square fitting can be 
wildly affected by the strong outliers. Therefore, we decided 
to use the weighted chi-square fitting to establish the 
concentration curves.  

Tables 2 and 3 show the resulting concentration curves of 
the required chemical species for the high and low gain 
using the chi-square fitting and TIC as the signal 
quantification method. The slope of the log-log curve (a) is 
typically between 1 and 3. The intercept of the log-log 
curve (b) varies considerably from chemical to chemical. 
The high-gain and low-gain curves share a similar slope for 
the same chemical. The intercept of the high-gain curve is 
lower than that of the lower-gain curve because the high-
gain signal is higher than the low-gain signal for the same 
concentration value.  

The fitting errors of the resulting concentration curves are 
listed in Tables 2 and 3. All concentration curves have a 
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fitting error lower than 40%, except the high-gain curve of 
vinyl chloride and the low-gain curve of ethanol. Since the 
high-gain curve of ethanol has a fitting error smaller than 
40%, we can use the high gain curve for ethanol 
concentration estimation. However, vinyl chloride does not 
have a reliable low-gain curve. In fact, the low-gain curve 
error was so large that we rejected the curve while fitting it. 
The cause of the high fitting error of vinyl chloride curves is 
that the concentration change leads to a relatively small 
change in ion count i.e. we have a low hardware sensitivity 
to vinyl chloride samples. The curve slope (a) is the ratio of 
a change in log10(concentration) to a change in 
log10(signal). Therefore, a large slope means that a change 
in concentration leads to a relatively small change in signal. 
This is shown in the concentration curves of vinyl chloride 
in Figure 2. The relative insensitivity of the ion count to the 
concentration makes very difficult to distinguish different 
concentration using the ion count. This difficulty causes a 
high fitting error and consequently a high error in 
concentration estimation. 

Testing Quantification Method  

Using the established concentration curves, we tested our 
concentration estimation accuracy against new test 
measurement data. The new test data consist of over 700 
elution events with over 25 chemicals, 5 different 
concentration values, and two or three duplicates. The test 
data were not used in establishing the concentration curves 
so they provides an independent way to gauge the accuracy 
of the concentration estimation using the concentration 
curves and the high-low gain switch decision rule. The 
separation between the training data and the test data also 
ensures that we avoid the overfitting of the concentration 
curve.  

The test results are shown in Table 4. The listed numbers 
are the errors of the estimated concentration averaged over 
about 10 elution measurements with about 5 different 
concentration values for each chemical. For 25 chemicals 
we tested, 15 chemicals met the VCAM’s concentration 
error budget requirement, that is, the error should be smaller 
than 40%. For 10 chemicals that did not meet the error 
budget requirement, 7 chemicals have errors between 41% 
and 66%. The other three chemicals (acetaldehyde, 
perfluoropropane, and vinyl chloride) show significant 
errors. For perfluoropropane and vinyl chloride, the large 
error is explained by the large concentration slope. The 
large slope means that a change in concentration is not well 
differentiated by the level of ion counts. The cause of the 
high error of acetaldehyde is likely due to coelution events 
with acetaldehyde during concentration curve training.  

This test result also provides a way to gauge the 
performance of the high-low gain switch decision rule. For 
ethyl benzene, the dual-gain rule leads to a smaller 
concentration error than using only one gain data. The high 
gain error is 47%, the low gain error 32%, and the dual gain 

error 27%. This improvement is due to the built-in 
intelligence that the decision rule has in determining a 
better-quality concentration curve for a given ion-count 
level.  

For some chemicals, the dual-gain error is the same as the 
lowest error between the high and low-gain. This means that 
one gain curve is consistently more reliable than the other 
gain curve. This can happen when the required 
concentration range of a chemical is either very low or very 
high. The high-gain curve would be more reliable than the 
low-gain curve for the very low concentration range, while 
the low-gain curve would be more reliable for the very high 
concentration range. This test result supports that our gain 
switch rule is successful in finding a more reliable gain 
curve for these chemicals. 

For most of other chemicals, the dual-gain error is in 
between the high-gain error and the low-gain error. This 
indicates that the dual-gain method often successfully 
chooses the right gain curve but not always chooses the 
right one. We can improve the performance of the dual-gain 
rule for these chemicals by individually tuning the 
conditions to detect a weak signal and saturation. Currently, 
the conditions are global to all chemicals for simplicity.  

 4. CONCLUSIONS  
We developed a concentration quantification method for 
VCAM the miniature gas chromatograph mass spectrometer 
instrument to be used to autonomously identify and quantify 
trace organic species in the International Space Station 
(ISS) internal air. The quantification method consists of 
designing a signal quantification scheme (TIC, DIC, LIC), 
establishing a concentration curve (relationship between the 
concentration and the quantified signal), and designing a 
dual-gain switch decision rule that chooses a more reliable 
gain curve to apply for a given signal level.  

For this work, we measured over 1800 elution events 
including over 30 chemicals, 5 different concentration 
values per chemical, and about 5 duplicates for each 
chemical and concentration. About 1100 elution events 
were used to establish a concentration curve, and about 700 
elution events were used to test the quantification method. 
For all chemicals except two chemicals (ethanol and vinyl 
chloride), the concentration curve has a fitting error smaller 
than 40%. We tested the concentration curve and decision 
rule by applying them to new independent test runs. The test 
campaign showed that the concentration quantification 
method leads to an error ranged between 14% and 66% on 
average for all chemicals tested except three chemicals 
(acetaldehyde, perfluoropropane, vinyl chloride). The three 
exceptions show a concentration error larger than 100%, 
which is partly explained by the insensitivity of the ion 
count to the change of concentration.  
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The quantification error budget allowed for VCAM is 40%. 
In order to reduce the error to below 40%, several 
approaches are considered for future work. One approach is 
to tune the instrument hardware gain parameters in order to 
increase the reliability and sensitivity of the ion count to the 
change of concentration. Another approach is to 
individually fine-tune the high-low gain switch decision 
rule in the quantification method for each chemical. 
Assurance that training and test data for concentration curve 
analysis does not contain coelutions would also more 
correctly isolate identified compounds and more accurately 
represent the system’s capability. 

This research was carried out at the Jet Propulsion 
Laboratory, California Institute of Technology, under a 
contract with the National Aeronautics and Space 
Administration.  
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Figure 3 - Concentration curves established with three different ion-count methods (TIC, DIC, LIC) and  

two different fitting methods (non-weighted least square fitting and weighted chi-square fitting). 
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Table 1.  VCAM Priority 1,2,3 species and their desired detection concentration range in ppm. 
 

CCoommppoouunndd  RRaannggee  
((ppppmm))  PPrriioorriittyy  

ethanol 1-10 1 
acetaldehyde 0.1-3 1 

acetone 0.5-5 1 
dichloromethane 0.03-5 1 

methanol 0.2-5 1 
octamethylcyclotetrasiloxane 0.05-1 1 
hexamethylcyclotrisiloxane 0.1-2 1 

propylene glycol 0.5-5 1 
perfluoropropane 10-100 1 

1-butanol 0.5-5 2 
benzene 0.01-1 2 
acrolein 0.01-1 2 
pentane 2-20 2 
hexane 2-20 2 

decamethylcyclopentasiloxan
e 0.1-2 

2 

pentanal 0.1-2 2 
hexanal 0.1-2 2 

ethyl benzene 1-10 2 
ethyl acetate 1-10 2 
2-propanol 1-10 2 

ethylene  (plants) 0.05-1 2 
freon 113 2-10 2 

furan 0.01-1 2 
toluene 1-10 2 

xylenes (3) 1-10 2 
1,2-dichloroethane 0.01-0.1 3 

alkyl amines (2) 0.5-5 3 
2-butanone 0.5-5 3 

4-methyl-2-pentanone 2-10 3 
carbonyl sulfide 0.01-1 3 

chloroform 0.02-1 3 
freon 11 2-10 3 
freon 12 2-10 3 
isoprene 0.05-1 3 
limonene 1-10 3 

trimethylsilanol 0.5-5 3 
vinyl chloride 0.05-1 3 
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Table 2. High-gain concentration curves fitted to Log-Log linear equation for several chemical species. 
 

Chemical Name  Slope (a) Intercept (b) Fitting error (%) 
ethanol 1.74 -8.64 33 

acetaldehyde 1.09 -5.36 14 
acetone 2.52 -13.77 18 

dichloromethane 1.68 -9.13 20 
octamethylcyclotetrasiloxane 2.57 -13.38 24 

perfluoropropane 3.73 -19.36 28 
benzene 1.57 -8.59 18 
pentane 2.94 -16.22 25 
hexane 2.13 -11.58 24 

pentanal 1.44 -7.24 12 
hexanal 3.01 -15.23 30 

ethyl benzene 1.21 -6.05 36 
ethyl acetate 1.71 -9.22 31 
2-propanol 1.7 -9.1 16 
freon 113 2.35 -13.58 4 

furan 1.86 -9.85 9 
toluene 1.44 -7.49 24 
xylenes 1.14 -5.52 37 

1,2-dichloroethane 2.25 -11.56 22 
2-butanone 1.93 -10.25 15 

4-methyl-2-pentanone 1.72 -9.36 24 
chloroform 2.14 -11.59 30 

freon 11 3.55 -20.26 31 
vinyl chloride 5.97 -30.04 88 

octane     
heptanal 2.2 -11.1 34 

average over all chemicals 2.2236 -11.7388 25 



 

 10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Low-gain concentration curves fitted to Log-Log linear equation for several chemical species. 
 
 

Chemical Name  Slope (a) Intercept (b) Fitting error (%) 
ethanol 3.16 -12.82 70 

acetaldehyde 1.72 -6.24 22 
acetone 1.46 -6.19 17 

dichloromethane 1.46 -6.25 17 
octamethylcyclotetrasiloxane    

perfluoropropane 3.22 -13.12 36 
benzene 1.47 -6.3 13 
pentane 1.68 -7.48 13 
hexane 1.27 -5.42 19 

pentanal    
hexanal 1.91 -7.1 9 

ethyl benzene 1.34 -5.26 11 
ethyl acetate 1.37 -5.9 35 
2-propanol 1.26 -5.25 16 
freon 113 1.07 -4.79 3 

furan    
toluene 1.11 -4.32 23 
xylenes 1.38 -5.17 21 

1,2-dichloroethane    
2-butanone 1.6 -6.62 19 

4-methyl-2-pentanone 1.2 -4.99 19 
chloroform 1.39 -6.03 24 

freon 11 2.04 -9.37 17 
vinyl chloride    

octane 1.16 -4.51 5 
heptanal    

average over all chemicals 1.6135 -6.6565 20 
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Table 4. Concentration estimation error by applying the concentration curves fitted with a training data set to 
a test data set for several chemical species. The estimation error is the difference between the estimated 

concentration and the real concentration relative to the real concentration. The high-gain and low-gain errors 
is the estimation error using the high-gain and low-gain concentration curves, respectively. The dual-gain 

error is given by applying the gain decision rule to determine which gain to use for concentration estimation.  
 

Chemical  high-gain error 
 low-gain 

error  dual-gain error 
                       ethanol 25 185 25 
                  acetaldehyde 494  494 
                       acetone 55 43 45 
               dichloromethane 25 16 24 
  octamethylcyclotetrasiloxane 40  40 
              perfluoropropane 85 112 99 
                       benzene 68 39 66 
                       pentane 109 26 37 
                        hexane 44 39 43 
                      pentanal 23  23 
                       hexanal 40 36 41 
                 ethyl benzene 47 32 27 
                 ethyl acetate 44 36 39 
                    2-propanol 29 35 29 
                     freon 113 59 32 35 
                         furan 32  32 
                       toluene 43 23 41 
                       xylenes 45 33 42 
            1,2-dichloroethane 26  26 
                    2-butanone 14 24 14 
          4-methyl-2-pentanone 37 36 38 
                    chloroform 69 24 53 
                      freon 11 24 26 28 
                vinyl chloride 335  335 
                        octane  39 39 
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